On the topological derivative due to kink of a crack with non-penetration. Anti-plane model
نویسندگان
چکیده
A topological derivative is defined, which is caused by kinking of a crack, thus, representing the topological change. Using variational methods, the anti-plane model of a solid subject to a non-penetration condition imposed at the kinked crack is considered. The objective function of the potential energy is expanded with respect to the diminishing branch of the incipient crack. The respective sensitivity analysis is provided by a Saint-Venant principle and a local decomposition of the solution of the variational problem in the Fourier series.
منابع مشابه
Soliton-like Solutions of the Complex Non-linear Klein-Gordon Systems in 1 + 1 Dimensions
In this paper, we present soliton-like solutions of the non-linear complex Klein-Gordon systems in 1+1 dimensions. We will use polar representation to introduce three different soliton-like solutions including, complex kinks (anti-kinks), radiative profiles, and localized wave-packets. Complex kinks (anti-kinks) are topological objects with zero electrical charges. Radiative profiles are object...
متن کاملAnalysis of Mode III Fraction in Functionally Graded Plate with Linearly Varying Properties
A model is provided for crack problem in a functionally graded semi-infinite plate under an anti-plane load. The characteristic of material behavior is assumed to change in a linear manner along the plate length. Also the embedded crack is placed in the direction of the material change. The problem is solved using two separate techniques. Primary, by applying Laplace and Fourier transformation,...
متن کاملAnalysis of Plane Waves in Anisotropic Magneto-Piezothermoelastic Diffusive Body with Fractional Order Derivative
In this paper the propagation of harmonic plane waves in a homogeneous anisotropic magneto-piezothermoelastic diffusive body with fractional order derivative is studied. The governing equations for a homogeneous transversely isotropic body in the context of the theory of thermoelasticity with diffusion given by Sherief et al. [1] are considered as a special case. It is found that three types of...
متن کاملOn Plane Waves for Mode-I Crack Problem in Generalized Thermoelasticity
A general model of the equations of generalized thermoelasticity for an infinite space weakened by a finite linear opening Mode-I crack is solving. The material is homogeneous and has isotropic properties of elastic half space. The crack is subjected to prescribed temperature and stress distribution. The formulation is applied to generalized thermoelasticity theories, the Lord-Şhulman...
متن کاملA Cohesive Zone Model for Crack Growth Simulation in AISI 304 Steel
Stable ductile crack growth in 3 mm thick AISI 304 stainless steel specimens has been investigated experimentally and numerically. Multi-linear Isotropic Hardening method coupled with the Von-Mises yield criterion was adopted for modeling elasto-plastic behavior of the material. Mode-I CT fracture specimens have been tested to generate experimental load-displacement-crack growth data during sta...
متن کامل